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Introduction

AdS/CFT conjecture - IIB string theory on AdS5 × S5 dual to
N = 4 SYM defined on the AdS boundary

String theory Hamiltonian (energies) ⇔ gauge theory
dilatation operator (scaling dimension)

Convention: N the gauge group dimension. Think of the
fields as N × N matrices
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AdS/CFT conjecture

String theory: Point-like gravitons, strings, giant gravitons

SYM scalar fields X j = φ2j−1 + iφ2j j = 1, 2, 3 where the
φj ’s transform as a vector of SO(6)

Dual gauge theory: Operators consisting of O(1),O(
√
N)

fields

Loop operators: O({nl}) = Tr (Zn1YZn2 ...YZnkY ) =

Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

Very useful mapping to spin chains

Orthogonal basis in the large N limit



Introduction Background Localised Operators Action of the Dilitation Operator Conclusion

AdS/CFT conjecture

String theory: Point-like gravitons, strings, giant gravitons

SYM scalar fields X j = φ2j−1 + iφ2j j = 1, 2, 3 where the
φj ’s transform as a vector of SO(6)

Dual gauge theory: Operators consisting of O(1),O(
√
N)

fields

Loop operators: O({nl}) = Tr (Zn1YZn2 ...YZnkY ) =

Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

Very useful mapping to spin chains

Orthogonal basis in the large N limit



Introduction Background Localised Operators Action of the Dilitation Operator Conclusion

AdS/CFT conjecture

String theory: Point-like gravitons, strings, giant gravitons

SYM scalar fields X j = φ2j−1 + iφ2j j = 1, 2, 3 where the
φj ’s transform as a vector of SO(6)

Dual gauge theory: Operators consisting of O(1),O(
√
N)

fields

Loop operators: O({nl}) = Tr (Zn1YZn2 ...YZnkY ) =

Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

Very useful mapping to spin chains

Orthogonal basis in the large N limit



Introduction Background Localised Operators Action of the Dilitation Operator Conclusion

AdS/CFT conjecture

String theory: Point-like gravitons, strings, giant gravitons

SYM scalar fields X j = φ2j−1 + iφ2j j = 1, 2, 3 where the
φj ’s transform as a vector of SO(6)

Dual gauge theory: Operators consisting of O(1),O(
√
N)

fields

Loop operators: O({nl}) = Tr (Zn1YZn2 ...YZnkY ) =

Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

Very useful mapping to spin chains

Orthogonal basis in the large N limit



Introduction Background Localised Operators Action of the Dilitation Operator Conclusion

AdS/CFT conjecture

For larger operators e.g. O(N) the loop operators are no
longer orthogonal

Schur polynomials: χT (Z ) = 1
n!

∑
σ∈Sn

χT (σ)Z i1
iσ(1)

...Z in
iσ(n)

O(N) operators dual to giant gravitons - D3 branes wrapping
an S3 of AdS5 or an S3 of S5

Schur polynomials of O(1) long rows or O(1) long columns

The backreaction to the AdS5 × S5 geometry can be dropped
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AdS/CFT conjecture

One can consider even larger O(N2) operators

These are dual to so-called LLM geometries, geometries with
an R × SO(4)× SO(4) isometry

ds2 =
−h−2(dt +Vidx

i )2 + h2(dy2 + dx idx i ) + yeGdΩ2
3 + ye−GdΩ̃2

3

z = 1
2 tanh(G ) h−2 = 2y cosh(G ) et cetera

Metric can be characterised entirely in terms of y = 0 plane
where z = ±1

2

Concentric circles: Dual to Schur polynomials with O(N) rows
and O(N) columns
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Adding excitations

Operators consisting of only one field - a lot of symmetry

A better dictionary should also provide information about
excitations

Gauge theory: χT ,(r ,s)αβ(Z ,Y ) =
1

n!m!

∑
σ∈Sn+m

χT ,(r ,s)αβ(σ)Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

String excitations represented as directed line segments on the
LLM plane representing energy and momentum

Can they be reproduced on the gauge theory side for LLM?

One loop: D = −g2
YM
8π2 Tr

(
[Y ,Z ]

[
d

dY ,
d

dZ

])
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How not to Localise

The conventional approach: Multiply a Schur polynomial
representing the background and a restricted Schur
polynomial representing the excitation

In the LLM geometry this does not produce a localised
excitation (Littlewood-Richardson rule)

O({nl}) = Tr (Zn1YZn2 ...YZnkY ) =

Y i1
iσ(1)

...Y im
iσ(m)

Z
im+1

iσ(m+1)
...Z im+n

iσ(m+n)

O({n}) =∑
T ,(t,u)αβ

dT n!m!
dt du(n+m)!χT ,(t,u)αβ(σ{n})χT ,(t,u)αβ(Z ,Y )

u has m boxes, t has n boxes and T has m + n boxes
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Localised operators

Proposal: OB({nk} ,Z ,Y ) =∑
T ,(t,u)αβ

√
fTB

hookstB
hooksu

hooksTB
χTB ,(tB ,u)αβ(σ−1{nk})OTB ,(tB ,u)βα(Z ,Y )

Note that we are only summing over T , t and u

tB organises all the Z boxes in the operator
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Simplifying the hooks

First simplification

hookstB
hooksu

hooksTB
= κm hooksthooksu

hooksT
(1 + O(N−1))

The background dependence can thus be factored out of the
first term

Young’s orthogonal representation

(i , i + 1)|pattern〉 =
1

ci−ci+1
|pattern〉+

√
1− 1

(ci−ci+1)2
|swapped pattern〉

Boxes that are well separated always swap
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Simplifying the restricted characters

χT (σ) =
∑

patterns〈pattern|σ|pattern〉 e.g. χT ((1)) = dT .

χT ,(t,u)αβ(σ): Take boxes from T to leave t and assemble u
from the removed boxes. These represent the Y fields. t
represents the Z fields.

χTB ,(tB ,u)αβ(σ−1{nk}): Remove Y boxes and then (any) of the
remaining Z boxes

When boxes are well separated they always swap ⇒ restricted
character vanishes

χTB ,(tB ,u)αβ(σ−1{nk}) = dBχT ,(t,u)αβ(σ−1{nk})
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Action of the Dilitation Operator

Proposal: OB({nk} ,Z ,Y ) =∑
T ,(t,u)αβ

√
fTB

hookstB
hooksu

hooksTB
χTB ,(tB ,u)αβ(σ−1{nk})OTB ,(tB ,u)βα(Z ,Y )

One loop: D = −g2
YM
8π2 Tr

(
[Y ,Z ]

[
d

dY ,
d

dZ

])
On Young diagram: Moves boxes around

A bit more detail: DORB ,(rB ,s)µ1µ2(Z ,Y ) =∑
T ,(t,u)ν1ν2

NRB ,(rB ,s)µ1,µ2;T ,(t,u)ν1ν2 × OT ,(t,u)ν1ν2(Z, Y)

NRB ,(rB ,s)µ1,µ2;T ,(t,u)ν1ν2 ∼
Tr
([

(1,m + 1),PRB ,(rB ,s)µ1µ2

]
IR′

B ,T
′
[
(1,m + 1),PT ,(t,u)ν2ν1

]
IT ′,R′

B

)
The intertwiner IT ′,R′

B
is only non-zero when T and RB differs

by the placement of a single box
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Proposal: OB({nk} ,Z ,Y ) =∑
T ,(t,u)αβ

√
fTB

hookstB
hooksu

hooksTB
χTB ,(tB ,u)αβ(σ−1{nk})OTB ,(tB ,u)βα(Z ,Y )

The rearranged box may be put in a distant spot

Y box put in a distant spot - the permutation (1,m + 1)
leaves the boxes inert ( 1

N )

(Rough Argument). Distant Z box can either swap in or out
of closed string state. Swapping out (in) far → character is
zero
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More precisely

DOB({n})

=
m∑

p=1

m+n∑
q=m+1

∑
T ,t,u,ν1ν2

∑
T+

NTB ,tb,u ×

×χT+,(t,u,)ν1ν2(ψ−1)× OTB ,(tB ,u)ν2ν1(Z ,Y )

ψ is a permutation consisting of four terms conjugate to
σn(p, q)(m + n + 1, q), (m + n + 1, q)σn(p, q),
(m + n + 1, q)σn(p, q), (m + n + 1, q)(p, q)σn

(p, q)σn and σn(p, q) is the product of a m + n − k and a k
cycle
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Putting it all together

The combined effect is that DOB = DO|N→Neff
. This is

precisely the expectation from gravity

Neff is the weight of the box where the excitation is placed

Gauge theory mechanism for distinguishing between
“background” and “excitation”
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Conclusion

The restricted Schur language is well suited to dealing with
excitations even of LLM geometries

Semi-classical physics can emerge in the large N limit, even if
the (“background”) operators are O(N2)

Gauge theory mechanism for distinguishing background and
excitation

***Large N Integrability still holds as long as the excitations
are attached to the same corners
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Outlook

Could the O(N) corner diagrams be understood?

Understanding the outward pointing corners

Excitations stretching between multiple corners

Can a constructive procedure be found that produces the
appropriate metric from a gauge theory operator?
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Thank you for your attention!
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