LLM Magnons

Jaco van Zyl ${ }^{1}$, R de Mello Koch ${ }^{1}$, C Mathwin ${ }^{1}$
${ }^{1}$ University of the Witwatersrand

30 March 2017, Wits

Talk Layout

(1) Introduction
(2) Background
(3) Localised Operators

4 Action of the Dilitation Operator
(5) Conclusion

Introduction

- $A d S / C F T$ conjecture - IIB string theory on $A d S_{5} \times S_{5}$ dual to $\mathcal{N}=4$ SYM defined on the $A d S$ boundary

Introduction

- $A d S / C F T$ conjecture - IIB string theory on $A d S_{5} \times S_{5}$ dual to $\mathcal{N}=4$ SYM defined on the AdS boundary
- String theory Hamiltonian (energies) \Leftrightarrow gauge theory dilatation operator (scaling dimension)
- Convention: N the gauge group dimension. Think of the fields as $N \times N$ matrices

AdS/CFT conjecture

- String theory: Point-like gravitons, strings, giant gravitons

AdS/CFT conjecture

- String theory: Point-like gravitons, strings, giant gravitons
- $S Y M$ scalar fields $X^{j}=\phi^{2 j-1}+i \phi^{2 j} \quad j=1,2,3$ where the ϕ^{j} 's transform as a vector of $S O(6)$

AdS/CFT conjecture

- String theory: Point-like gravitons, strings, giant gravitons
- SYM scalar fields $X^{j}=\phi^{2 j-1}+i \phi^{2 j} \quad j=1,2,3$ where the ϕ^{j} 's transform as a vector of $S O(6)$
- Dual gauge theory: Operators consisting of $O(1), O(\sqrt{N})$ fields
- Loop operators: $O\left(\left\{n_{l}\right\}\right)=\operatorname{Tr}\left(Z^{n_{1}} Y Z^{n_{2}} \ldots Y Z^{n_{k}} Y\right)=$ $Y_{i_{\sigma(1)}}^{i_{1}} \ldots Y_{i_{\sigma(m)}}^{i_{m}} Z_{i_{\sigma(m+1)}}^{i_{m+1}} \ldots Z_{i_{\sigma(m+n)}}^{i_{m+n}}$

AdS/CFT conjecture

- String theory: Point-like gravitons, strings, giant gravitons
- SYM scalar fields $X^{j}=\phi^{2 j-1}+i \phi^{2 j} \quad j=1,2,3$ where the ϕ^{j} 's transform as a vector of $S O(6)$
- Dual gauge theory: Operators consisting of $O(1), O(\sqrt{N})$ fields
- Loop operators: $O\left(\left\{n_{l}\right\}\right)=\operatorname{Tr}\left(Z^{n_{1}} Y Z^{n_{2}} \ldots Y Z^{n_{k}} Y\right)=$ $Y_{i_{\sigma(1)}}^{i_{1}} \ldots Y_{i_{\sigma(m)}}^{i_{m}} Z_{i_{\sigma(m+1)}}^{i_{m+1}} \ldots Z_{i_{\sigma(m+n)}}^{i_{m+n}}$
- Very useful mapping to spin chains
- Orthogonal basis in the large N limit

AdS / CFT conjecture

- For larger operators e.g. $O(N)$ the loop operators are no longer orthogonal
- Schur polynomials: $\chi_{T}(Z)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{T}(\sigma) Z_{i_{\sigma(1)}}^{i_{1}} \ldots Z_{i_{\sigma(n)}}^{i_{n}}$
- $O(N)$ operators dual to giant gravitons - D3 branes wrapping an S^{3} of $A d S_{5}$ or an S^{3} of S^{5}
- Schur polynomials of $O(1)$ long rows or $O(1)$ long columns
- The backreaction to the $A d S_{5} \times S^{5}$ geometry can be dropped

AdS/CFT conjecture

- One can consider even larger $O\left(N^{2}\right)$ operators

AdS/CFT conjecture

- One can consider even larger $O\left(N^{2}\right)$ operators
- These are dual to so-called LLM geometries, geometries with an $R \times S O(4) \times S O(4)$ isometry
- $d s^{2}=$
$-h^{-2}\left(d t+V_{i} d x^{i}\right)^{2}+h^{2}\left(d y^{2}+d x^{i} d x^{i}\right)+y e^{G} d \Omega_{3}^{2}+y e^{-G} d \tilde{\Omega}_{3}^{2}$
- $z=\frac{1}{2} \tanh (G) \quad h^{-2}=2 y \cosh (G) \quad$ et cetera
- Metric can be characterised entirely in terms of $y=0$ plane where $z= \pm \frac{1}{2}$

AdS/CFT conjecture

- One can consider even larger $O\left(N^{2}\right)$ operators
- These are dual to so-called LLM geometries, geometries with an $R \times S O(4) \times S O(4)$ isometry
- $d s^{2}=$
$-h^{-2}\left(d t+V_{i} d x^{i}\right)^{2}+h^{2}\left(d y^{2}+d x^{i} d x^{i}\right)+y e^{G} d \Omega_{3}^{2}+y e^{-G} d \tilde{\Omega}_{3}^{2}$
- $z=\frac{1}{2} \tanh (G) \quad h^{-2}=2 y \cosh (G) \quad$ et cetera
- Metric can be characterised entirely in terms of $y=0$ plane where $z= \pm \frac{1}{2}$
- Concentric circles: Dual to Schur polynomials with $O(N)$ rows and $O(N)$ columns

Adding excitations

- Operators consisting of only one field - a lot of symmetry
- A better dictionary should also provide information about excitations

Adding excitations

- Operators consisting of only one field - a lot of symmetry
- A better dictionary should also provide information about excitations
- Gauge theory: $\chi_{T,(r, s) \alpha \beta}(Z, Y)=$ $\frac{1}{n!m!} \sum_{\sigma \in S_{n+m}} \chi_{T,(r, s) \alpha \beta}(\sigma) Y_{i_{\sigma(1)}}^{i_{1}} \ldots Y_{i_{\sigma(m)}}^{i_{m}} Z_{i_{\sigma(m+1)}}^{i_{m+1}} \ldots Z_{i_{\sigma(m+n)}}^{i_{m+n}}$
- String excitations represented as directed line segments on the LLM plane representing energy and momentum

Adding excitations

- Operators consisting of only one field - a lot of symmetry
- A better dictionary should also provide information about excitations
- Gauge theory: $\chi_{T,(r, s) \alpha \beta}(Z, Y)=$ $\frac{1}{n!m!} \sum_{\sigma \in S_{n+m}} \chi_{T,(r, s) \alpha \beta}(\sigma) Y_{i_{\sigma(1)}}^{i_{1}} \ldots Y_{i_{\sigma(m)}}^{i_{m}} Z_{i_{\sigma(m+1)}}^{i_{m+1}} \ldots Z_{i_{\sigma(m+n)}}^{i_{m+n}}$
- String excitations represented as directed line segments on the LLM plane representing energy and momentum
- Can they be reproduced on the gauge theory side for LLM?
- One loop: $D=-\frac{g_{Y M}^{2}}{8 \pi^{2}} \operatorname{Tr}\left([Y, Z]\left[\frac{d}{d Y}, \frac{d}{d Z}\right]\right)$

How not to Localise

- The conventional approach: Multiply a Schur polynomial representing the background and a restricted Schur polynomial representing the excitation

How not to Localise

- The conventional approach: Multiply a Schur polynomial representing the background and a restricted Schur polynomial representing the excitation
- In the LLM geometry this does not produce a localised excitation (Littlewood-Richardson rule)

How not to Localise

- The conventional approach: Multiply a Schur polynomial representing the background and a restricted Schur polynomial representing the excitation
- In the LLM geometry this does not produce a localised excitation (Littlewood-Richardson rule)
- $O\left(\left\{n_{l}\right\}\right)=\operatorname{Tr}\left(Z^{n_{1}} Y Z^{n_{2}} \ldots Y Z^{n_{k}} Y\right)=$ $Y_{i_{\sigma(1)}}^{i_{1}} \ldots Y_{i_{\sigma(m)}}^{i_{m}} Z_{i_{\sigma(m+1)}}^{i_{m+1}} \ldots Z_{i_{\sigma(m+n)}}^{i_{m+n}}$
- $O(\{n\})=$ $\sum_{T,(t, u) \alpha \beta} \frac{d_{T} n!m!}{d_{t} d_{u}(n+m)!} \chi_{T,(t, u) \alpha \beta}\left(\sigma_{\{n\}}\right) \chi_{T,(t, u) \alpha \beta}(Z, Y)$
- u has m boxes, t has n boxes and T has $m+n$ boxes

Localised operators

- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$

$$
\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{t_{B}} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)
$$

- Note that we are only summing over T, t and u
- t_{B} organises all the Z boxes in the operator

Simplifying the hooks

- First simplification
- $\frac{\text { hooks }_{t_{B}} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}=\kappa^{m} \frac{\text { hookst }_{t} \text { hooks }_{u}}{\text { hooks }_{T}}\left(1+O\left(N^{-1}\right)\right)$
- The background dependence can thus be factored out of the first term

Simplifying the hooks

- First simplification
- $\frac{\text { hooks }_{t_{B}} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}=\kappa^{m} \frac{\text { hooks }_{t} \text { hooks }_{u}}{\text { hooks }_{T}}\left(1+O\left(N^{-1}\right)\right)$
- The background dependence can thus be factored out of the first term
- Young's orthogonal representation
- $(i, i+1) \mid$ pattern $\rangle=$
$\left.\frac{1}{c_{i}-c_{i+1}} \right\rvert\,$ pattern $\rangle+\sqrt{1-\frac{1}{\left(c_{i}-c_{i+1}\right)^{2}}}$ swapped pattern \rangle
- Boxes that are well separated always swap

Simplifying the restricted characters

- $\chi_{T}(\sigma)=\sum_{\text {patterns }}\langle$ pattern $| \sigma \mid$ pattern $\rangle \quad$ e.g. $\quad \chi_{T}((1))=d_{T}$.

Simplifying the restricted characters

- $\chi_{T}(\sigma)=\sum_{\text {patterns }}\langle$ pattern $| \sigma \mid$ pattern〉 \quad e.g. $\quad \chi_{T}((1))=d_{T}$.
- $\chi_{T,(t, u) \alpha \beta}(\sigma)$: Take boxes from T to leave t and assemble u from the removed boxes. These represent the Y fields. t represents the Z fields.

Simplifying the restricted characters

- $\chi_{T}(\sigma)=\sum_{\text {patterns }}\langle$ pattern $| \sigma \mid$ pattern〉 \quad e.g. $\quad \chi_{T}((1))=d_{T}$.
- $\chi_{T,(t, u) \alpha \beta}(\sigma)$: Take boxes from T to leave t and assemble u from the removed boxes. These represent the Y fields. t represents the Z fields.
- $\chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right)$: Remove Y boxes and then (any) of the remaining Z boxes

Simplifying the restricted characters

- $\chi_{T}(\sigma)=\sum_{\text {patterns }}\langle$ pattern $| \sigma \mid$ pattern $\rangle \quad$ e.g. $\quad \chi_{T}((1))=d_{T}$.
- $\chi_{T,(t, u) \alpha \beta}(\sigma)$: Take boxes from T to leave t and assemble u from the removed boxes. These represent the Y fields. t represents the Z fields.
- $\chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right)$: Remove Y boxes and then (any) of the remaining Z boxes
- When boxes are well separated they always swap \Rightarrow restricted character vanishes
- $\chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right)=d_{B} \chi_{T,(t, u) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right)$

Action of the Dilitation Operator

- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$
$\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{B} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)$
- One loop: $D=-\frac{g_{Y M}^{2}}{8 \pi^{2}} \operatorname{Tr}\left([Y, Z]\left[\frac{d}{d Y}, \frac{d}{d Z}\right]\right)$
- On Young diagram: Moves boxes around

Action of the Dilitation Operator

- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$

$$
\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{t_{B}} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)
$$

- One loop: $D=-\frac{g_{Y M}^{2}}{8 \pi^{2}} \operatorname{Tr}\left([Y, Z]\left[\frac{d}{d Y}, \frac{d}{d Z}\right]\right)$
- On Young diagram: Moves boxes around
- A bit more detail: $D O_{R_{B},\left(r_{B}, s\right) \mu_{1} \mu_{2}}(Z, Y)=$ $\sum_{T,(t, u) \nu_{1} \nu_{2}} N_{R_{B},\left(r_{B}, s\right) \mu_{1}, \mu_{2} ; T,(t, u) \nu_{1} \nu_{2}} \times O_{T,(t, u) \nu_{1} \nu_{2}}(\mathrm{Z}, \mathrm{Y})$
- $N_{R_{B},\left(r_{B}, s\right) \mu_{1}, \mu_{2} ; T,(t, u) \nu_{1} \nu_{2}} \sim$
$\operatorname{Tr}\left(\left[(1, m+1), P_{R_{B},\left(r_{B}, s\right) \mu_{1} \mu_{2}}\right] I_{R_{B}^{\prime}, T^{\prime}}\left[(1, m+1), P_{T,(t, u) \nu_{2} \nu_{1}}\right] I_{T^{\prime}, R_{B}^{\prime}}\right)$
- The intertwiner $I_{T^{\prime}, R_{B}^{\prime}}$ is only non-zero when T and R_{B} differs by the placement of a single box
- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$
$\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{t_{B}} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)$
- The rearranged box may be put in a distant spot
- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$

$$
\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{B} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)
$$

- The rearranged box may be put in a distant spot
- Y box put in a distant spot - the permutation $(1, m+1)$ leaves the boxes inert $\left(\frac{1}{N}\right)$
- Proposal: $O_{B}\left(\left\{n_{k}\right\}, Z, Y\right)=$

$$
\sum_{T,(t, u) \alpha \beta} \sqrt{\frac{f_{T_{B}} \text { hooks }_{B} \text { hooks }_{u}}{\text { hooks }_{T_{B}}}} \chi_{T_{B},\left(t_{B}, u\right) \alpha \beta}\left(\sigma_{\left\{n_{k}\right\}}^{-1}\right) O_{T_{B},\left(t_{B}, u\right) \beta \alpha}(Z, Y)
$$

- The rearranged box may be put in a distant spot
- Y box put in a distant spot - the permutation $(1, m+1)$ leaves the boxes inert $\left(\frac{1}{N}\right)$
- (Rough Argument). Distant Z box can either swap in or out of closed string state. Swapping out (in) far \rightarrow character is zero

More precisely

$$
\begin{aligned}
& \begin{array}{l}
D O_{B}(\{n\}) \\
=
\end{array} \sum_{p=1}^{m} \sum_{q=m+1}^{m+n} \sum_{T, t, u, \nu_{1} \nu_{2}} \sum_{T^{+}} N_{T_{B}, t_{b}, u} \times \\
& \times \chi_{T^{+},(t, u), \nu_{1} \nu_{2}}\left(\psi^{-1}\right) \times O_{T_{B},\left(t B_{B}, u\right) \nu_{2} \nu_{1}}(Z, Y)
\end{aligned}
$$

- ψ is a permutation consisting of four terms conjugate to

$$
\begin{aligned}
& \sigma_{n}(p, q)(m+n+1, q),(m+n+1, q) \sigma_{n}(p, q) \\
& (m+n+1, q) \sigma_{n}(p, q),(m+n+1, q)(p, q) \sigma_{n}
\end{aligned}
$$

- $(p, q) \sigma_{n}$ and $\sigma_{n}(p, q)$ is the product of a $m+n-k$ and a k cycle

Putting it all together

- The combined effect is that $D O_{B}=\left.D O\right|_{N \rightarrow N_{\text {eff }}}$. This is precisely the expectation from gravity
- $N_{\text {eff }}$ is the weight of the box where the excitation is placed

Putting it all together

- The combined effect is that $D O_{B}=\left.D O\right|_{N \rightarrow N_{\text {eff }}}$. This is precisely the expectation from gravity
- $N_{\text {eff }}$ is the weight of the box where the excitation is placed
- Gauge theory mechanism for distinguishing between "background" and "excitation"

Conclusion

- The restricted Schur language is well suited to dealing with excitations even of LLM geometries
- Semi-classical physics can emerge in the large N limit, even if the ("background") operators are $O\left(N^{2}\right)$
- Gauge theory mechanism for distinguishing background and excitation
- ***Large N Integrability still holds as long as the excitations are attached to the same corners

Outlook

- Could the $O(N)$ corner diagrams be understood?
- Understanding the outward pointing corners
- Excitations stretching between multiple corners
- Can a constructive procedure be found that produces the appropriate metric from a gauge theory operator?

Thank you for your attention!

